| GEOLO |--|---|----------|--|--------------------|-------------|--------------|--------|--------|------|--------------|----------|------|--------|----------|---|---------------------------------------|------------|--------------|----------------------------|--|---|--|-------------------------------|----------------------|------| | s #
Samples | Sample Numbers
(Series) | Cu | Pb | Zn | Mo | Ag | Cd | Ni (| LEM | ENTS
Mn F | TO E | E AN | ALYZ | ZED
W | Au | As | Hg | Sn | Sb | Ва | E spec | Neutron
Activation | DCP | Ore
test | | | 10 | W8-533 | Cu | Pb | Zn | Me | Ag (| Od | Ni C | u N | in Fe | BI | V | u V | N F | Au | AS | Hg | Sn | Sti | Ba | E spec | Neetron
Activation | DCP | ore
test | | | | (5.5) | Cu | Pb | Zn | Mio | Ag i | Cd / | NI C | 0 1 | In-Fe | Bi | ¥ | UV | W F | An | As | Hg | Sn | Sb- | 88 | E spec | Neutron
Activation | DCP | ore
lest | | | | (295-300) | Cu | Pb. | Zn | Mo | Ag I | Cel | NI C | 0 1 | in Fe | 81 | ñ | U. V | N F | Au | As | Hg | Sn | Sh | Ba | E spec | Neutron
Activation | DCP | ore | | | | | Ca | Pb | Zn | Mo | Ag. | Ord I | Ni C | 0 1 | în Fe | 81 | V | UV | N F | Au | As | Hg | Sn | Sb | Ba . | E spec | Neutron
Activation | DCP | ore | | | | | Cu | Pb | Zn | Ma | Ag (| 68 | NI C | a h | in Fe | Bi | V | U V | N F | An | As | Нд | Sh. | Sb | 88 | E spec | Neutron
Activation | DCP | ore | | | | | Cu | Ph | Zn | Mo | Ag I | Cal | Ni C | 0 1 | in Fe | 81 | ٧ | u v | N F | Au | As | Hg | Sn | Sh | Ba | E spec | Neutron
Activation | DCP | ore
test | | | | | Cu | Pb | Zn | Mo | Ag I | Cd | Mi. C | 0 1 | In Fe | Bi | v. | UV | N F | Ass | As | Hg | Sn | Sb | Ba | E spec | Neutron
Activation | DCP | ore
test | | | The same | | Cu | Ph | Zn | Ma | Ag | Cel | NI C | 0 14 | In Fe | 8i | V | UV | N F | Au | As | Hg | Sn | Sb | 88 | E spec | Neutron
Activation | DCP | ore
test | | | | | Cu | Pti | Zn | Mα | Ag (| Cuf T | NI C | 0 1 | in Fe | Bi | V | UV | N F | ÁU | As | Hg | Sn | sb | Ba | E spac | Neutron
Activation | DCP | are
lest | (| | | | Cu | Ph | Zn | Mo | Ag I | 36 | Ni C | 8 | in Fe | Bi | v | u V | N F | Air | As | Hg | Sn | Sb | 100
100
100
100
100
100
100
100
100
100 | E spec | Nentron
Activation | OCP | ore
test | | | | | Cu | Ph | Zn | Mo | Ag I | od I | Ni C | 0 1 | in Fe | 81 | V | U. V | N F | An | As | На | Sn | Sb | 88 | E spec | Neutron
Activation | DCP | ore
test | | | | | Cu | Pb | Zn | Ma | Ag (| Cd | VI C | 0 1 | in Fe | Bł | ٧ | UV | N F | Au | As | Hg | Sn | Sh | 8a | E spec | Neutron
Activation | DCP | ore
test | | | | 427 | Cu | Pb | Zn | Me | Ag I | Od I | NI C | 0 | in Fe | 81 | V | UV | N F | Au | As | Hg | Sn | Sb | 82 | E spec | Neutron
Activation | DCP | ore
test | | | | | | Pb | Zn. | Mo | Ac f | Cel II | NI C | 0 | | - | 1.5 | | | | | | en. | 416 | | | Neutron
Activation | DCP | ore | | | | | 17.31 | E.U | 5.21 | ×5.63. | 1.00 | | 24 101 | 4 1 | in re | 101 | 14 | UV | NS | 911 | 195 | 10 | 011 | OU | BS. | E spec | Menaghon | DUE | test | | | Please | analyze by | 1 | Pb | Zn
ass | Mo | | ore | e gr | | | 81 | V | } | N F | Au | As | Hg
S, t | Sn | Sh | Ba
Ba | E spec | Neutran
Activation | ed | ore test | sam | | DO NOT | ASSAY GEOCHEMICAL | OVER | Ph | ass | ay | emi | ore | (ppr | | e)
trac | BI BI | vel) | } | N F | Au | As | s, t | sn | sh | Ba
Ba | E spec | Neutran
Activation | ed | ore | sam | | DO NOT | • | OVER | Ph | ass | ay | emi | ore | (ppr | | | BI BI | vel) | } | N F | meth | As | Hg
S, t | sn | sh | Ba | E spec | Neutran
Activation | ed | ore | sam | | DO NOT | ASSAY GEOCHEMICAL | OVER | Ph | ass | ay | emi | ore | (ppr | | | BI
BI | vel) | } | N F | meth | As | s, t | sn | sh | B3
B3 | E spec | Neutran
Activation | ed | ore | sam | | DO NOT | ASSAY GEOCHEMICAL (| OVER | Ph | ass | ay | emi | ore | (ppi | m, | | | | } | | | | | | Sh | Ba Ba | sed C | Neutran Activation Prepar unprep | ed | ore | sam | | DO NOT | ASSAY GEOCHEMICAL | DVEF | Pb | ass | ay | emi | ore | (ppi | m, | trac | | | }
} | | | | TIOI | N | | | sed Pi | Neutran
Activation | eed
pared | ore test | sam | | DO NOT | COARSE REJECTS D AFTER ANALYSIS COM | DVEF | Ph | ass
geo | ay | emi | ore | (ppi | m, | trac | | | } | | | | TIOI | N D R | IISC/ | ARD | sed Pi AFTER COD AF | Neutran Activation Prepar unprepar u | ed pared | ore test | sam | | DO NOT
IMMENTS
DISCAR
RETURN
STORE | COARSE REJECTS D AFTER ANALYSIS COM I COD AFTER ANALYSIS 60 DAYS-DISCARD | DVER | Ph RRLIM | ass
geo
MITS | Ma say | emid | ore | (ppi | m, | trac | | | } | | | | TIOI | N D R S | IISCA
ETU
TOR | ARD
IRN
RE 1 | PI AFTER COD AF | Neutran Activation Prepar unprepart Prepart | oared DMPLETE S COMPI | ore test } | | | DO NOT
MMENTS
DISCAR
RETURN
STORE | COARSE REJECTS D AFTER ANALYSIS COM | DVER | Ph RRLIM | ass
geo
MITS | Ma say | DAYS | orecal | (ppr | m, | trac | NDIC | ATE | | IPLE | DISA | POSI | TIOI | N D R S STOR | IISC/
ETU
TOR
AGE | ARD
IRN
RE 1 | PI AFTER COD AF | Neutran Activation Prepar unpreput un unpreput un unpreput un | oared DMPLETE S COMPI | ore test } | | | DO NOT
MMENTS
DISCAR
RETURN
STORE
ORAGE CO | COARSE REJECTS D AFTER ANALYSIS COM I COD AFTER ANALYSIS O DAYS-DISCARD HARGE WILL BE ASSESS | DVER | TE MPLE | ass
geo
MITS | Ma Say oche | emid
DAYS | orecal | (ppr | m, | trac | NDIC | ATE | | IPLE | DISA | POSI | TIOI | N D R S STOR | IISC/
ETU
TOR
AGE | ARD
IRN
RE 1 | PI AFTER COD AF | Neutran Activation Prepar unpreput un unpreput un unpreput un unpreput un | oared DMPLETE S COMPI | ore test } | | | DO NOT
MMENTS
DISCAR
RETURN
STORE
ORAGE CO | COARSE REJECTS D AFTER ANALYSIS COM I COD AFTER ANALYSIS 60 DAYS-DISCARD | DVER | TE MPLE | ass
geo
MITS | Ma Say oche | emid
DAYS | orecal | (ppr | m, | trac | NDIC | ATE | | MPL | DISF | POSI | TIOI ST | N D R S STOR | TO: | ARD
IRN
RE 1 | PI AFTER COD AF YEAR-HARGE V | Neutran Activation Prepar unpreput un unpreput un unpreput un unpreput un | ed pared DMPLETE S COMPI | etest LETE TER 1 Y | 'EAR | | DO NOT
MMENTS
DISCAR
RETURN
STORE
ORAGE CO | COARSE REJECTS D AFTER ANALYSIS COM I COD AFTER ANALYSIS O DAYS-DISCARD HARGE WILL BE ASSESS | PLECOM | Ph P | ass
geo
MITS | say oche |)AYS | ore | (ppr | m, | trac | NDIC | ATE | | MPL | DISF | O BE | TIOI | N D R S STOR | TO: | ARD
IRN
RE 1 | PU AFTER COD AF YEAR-PARGE V | Prepar unpreputer Analysis Content Analysis Content Analysis Content Analysis Content Analysis Etulia Be Asse | DMPLETE
S COMPL
SSED AF | etest LETE TER 1 Y | ÆAR | | DISCAR RETURN STORE ORAGE CI | COARSE REJECTS D AFTER ANALYSIS COM I COD AFTER ANALYSIS 60 DAYS-DISCARD HARGE WILL BE ASSESS | PLECOM | Ph P | ass
geo
MITS | say oche | DAYS | orecal | (ppr | m, | ASE III | WDIC | ATE | | MPLE | DISF | POSI | TION ST | N D R S TOR | TO: | ARD
IRN
RE 1 | Sed Purple After COD AFTER COD AFTER ARGE V | Neutran Activation Prepar unprepart unprepart | DMPLETE
S COMPI | ette | 'EAR | | DISCAR RETURN STORE ORAGE CI | COARSE REJECTS D AFTER ANALYSIS COM I COD AFTER ANALYSIS 60 DAYS-DISCARD HARGE WILL BE ASSESS | PLECOM | Ph P | ass
geo
MITS | say oche | DAYS | orecal | (ppr | m, | ASE III | WDIC | ATE | | MPLE | DISF | POSI | TION ST | N D R S TOR | TO: | ARD
IRN
RE 1 | Sed Purple After COD AFTER COD AFTER ARGE V | Prepar unpreputer Analysis Content Analysis Content
Analysis Content Analysis Content Analysis Etulia Be Asse | DMPLETE
S COMPI | ette | 'EAR | | DISCAR RETURN STORE ORAGE CI Results Invoices Pulps Rejects | COARSE REJECTS D AFTER ANALYSIS COM I COD AFTER ANALYSIS 60 DAYS-DISCARD HARGE WILL BE ASSESS | IPLE COM | Ph RLIM | ass
geo
MITS | say ocho | emid
DAYS | orecal | PI | m, | ASE III | CES | ATE | | MPLE | DISF
Res
Inv | O BE sults pices | TIOI | N D R S STOR | TO: | ARD
IRN
RE 1 | PU AFTER COD AF YEAR-FIARGE V | Neutran Activation Prepar unprepart unprepart | pared DMPLETES COMPLESSED AF | ere lest | 'EAR | | DISCAR RETURN STORE ORAGE CO Results Invoices Pulps Rejects Invoice. | COARSE REJECTS D AFTER ANALYSIS COM I COD AFTER ANALYSIS 60 DAYS-DISCARD HARGE WILL BE ASSESS | DVER | Ph P | ass
geo
MITS | say oche | DAYS | ore | PI | m, | INVO | CES | ATE | | MPLE | DISF
ES TI
Res
Inv
Pul
Rej | D BE sults pices ps _ ects sults pice | TIOI | N D R S STOR | TO: | ARDIRN
RE 1 | PU AFTER COD AF YEAR-PARGE V | Neutran Activation Prepar unprepar un prepar u | DMPLETE
S COMPL | LETE TER 1 Y | 'EAR | | | Date S | hipped | 1 | 0 | 8 | Collect | | | | |-----------------|-----------------|--|-----|-----|------|-----|-----|-----|-----|-----|------|----------|------|------|------|------|-----|------|-------|-------|-----|------|-------------|--------|--|----------|-------------|---------| | | # Parc | els in Shipment | | | | | | | | | | | _ | | TO | TA | LI | IUN | ИВ | ER | OF | S | AM | PLES. | 4 | 7 | | | | | | GIST'S NAME | 4 | | Samples
Type | #
Samples | Sample Numbers
(Series) | Cu | Pb | Zn | Mo | Ag | Cd | Ni | ELE | MEN | TS
Fe | TO E | JE A | NAL | YZEE | F | Au | As | Hg | Sn | Sb | Ва | E spec | Neutron
Activation | DCP | Ore
test | | | (1) | 49 | 58-533 | Cu | Pb | Zn | Mo | Ag | Cq | Ni | Co | Mn | Fe | Bi | V | и | W | F | Au | As | Hg | Sn | Sti | Ba | E spac | Neutron
Activation | DCP | ore
test | | | 14 | 11 | 300-3051 | Cu | Pb | Zn | Mo | Ag | Cd | Ni | Co | Mn | Fe | Bi | ¥ | U | W | F | Au | As | Hg | Sn | Sh | Ba | É spec | Neutron
Activation | DCP | ore
test | | | 1 | 1/5 | 3 | Cu | Pb | Zn | Ma | Ag | Cd | NI | Co | Ma | Fe | 81 | V | U | W | F | Au | As | Hig | Sa | Sb | 89 | E spec | Neutron
Activation | DCP | ore
(es) | | | | 1 | 540 545) | Cu | Pb | Za | Mo | Ag | Cd | NI. | Co | Mn | Fe | Bi | Ä | U | W | F | Au | As | Hg | Sn | Str | Ba. | E spec | Neutron
Activation | DCP | ore
test | | | | | | Cu | Pb | Zn | Ma | Ag | Cd | Ni | Ca | Mn | Fe | Bi | V | U | W | F | Att | As | Hg | Sn | Sb | Ва | Espec | Neutron
Activation | DCP | ore
lest | | | | | | Cu | Pb | Zn | Mo | Ag | Cd | Ni | Co | Min | Fe | 81 | V | U | W | F | Au | As | Hg | Sn | Sb | Ва | E spec | Neutron
Activation | DCP | ore
fest | P. C. | | | | | Cu | Pb | Zo | Mio | Ag | Cd | NL | Co | Min | Fe | Bi | ٧ | IJ | W | F | Au | As | Hg | Sn | Sb | Ba | E spec | Neutron
Activation | DCP | ore
test | | | | In Fig | | Cu | Pb | Zn | Mo | | Cd | Ni | Co | Min | Fe | Bi | V | U | W | F | Ан | As | Hg | Sn | Sb | Ba | E sper | Neutron
Activation | DCP | oce
test | | | | | | Cu | Ph | Zn | Mo | Āģ | Cd | NF | Co | Mn | Fe | BI | ¥ | U | W | F | Au | As | Hg | Sn | Sb | Ba | E spec | Neutron
Activation | DCP | ore
lest | | | | | | Cu | Pb | Zo | Ma | Ag | Ed | Ni | Co | Mn | Fe | 81 | V | U | W | F | Au | Ā5 | Hg | Sn | Str | Ва | E spec | Neutron
Activation | DCP | ore
test | | | | | | Cu | Pb | Zn | Mo | Ag | Cd | Ni | Co | Mn | Fe | Bi | ٧ | U | W | F | Au | As | Hg | Sn | Sh | Ва | E spac | Neutron
Activation | DCP | ore
test | | | | | | Cir | Ph | Zn | Ma | Ag | Cd | N | Co | Mn | Fe | 81 | # | U | W | F | Au | As | Hg | Sn | Sti | Ва | E spec | Neutron
Activation | DCP | ore
test | | | | 11-15 | | Cu | Ph | Zn | Mo | Ag | Cd | No. | Cn | Min | Fe | Bi | v | U | W | F | Au | As | Hig | Sn | Sh | Ba | Espec | Neutron
Activation | DCP | nre
test | | | | | | Cu | Ph | Zn | Mo | Ag | CH | Ni | Co. | Mn | Fe | Bi | V | U | W | F | Au | As | Hg | Sn | Sb | Ba | Espec | Neutron
Activation | DCP | ore
test | | | | | | Cu | Pb | Zn | Via | Āg | Cri | Ni | Co | Mn | Fe | 81 | V | U | W | F | Air | As- | Ha | Sn- | Sb | Ba | E spec | Neutron
Activation | DCP | ore
test | | | 1000 | DO NOT | ASSAY GEOCHEMICAL (| OVE | RLI | MITS | | | | (p | pm | , tr | ace | e le | vel |) | } | n | neth | nod | ls, 1 | the | en | clo | sed | prepar
unprep | | 3 | samples | | _ | | | | | | | | | | | | | | | | - 9 | PLE | AS | E IN | IDIC | ATE | SA | MP | LE | DISF | 05 | ITIO | N | | | | | | | | | | RETURN
STORE | COARSE REJECTS D AFTER ANALYSIS COM I COD AFTER ANALYSIS O DAYS-DISCARD HARGE WILL BE ASSESS | CON | ИPL | | | YAC | S | | | | | | | | | | | | | 1 F | RETU | JRN
RE 1 | COD AI | ULPS R ANALYSIS CO FTER ANALYS RETURN COD WILL BE ASSE | IS COMPI | LETE | 'EAR | | | | | | | | | | RE | SU | LTS | , IN | VOI | CES | AN | ID S | SAM | PLE | ST | 0 B | E SI | ENT | то | | | | | | | | | | In DAR | | | | | | | | | | | | | | | | Res | sults | | | | | | | | | | | | Invoices | Hochm | 1 | 17 | M | 1 | 7 | | | | | | _ | | | | | Inv | oice | s | Rejects | | | | | | | | | | | | _ | | | | | Rej | ects | _ | | | | | | | | | | | Date S | hipped 2 | 18 | | | | | | | | | | _Via | a _ | | | | | P | rep | aic | i | 0 | r [| Collect | , | | | |-----------------|--------------|----------------------------|------|------|-----|-------|-----|------|------|------|-----------|-------|------|------|-----|-------|-----|-------|------|------|------|------|------|---------|-----------------------|-----------|-------------|---------| | | # Parc | els in Shipment | | | | | | | | | | | _ | | TO | OTA | LI | NUN | ИΒІ | ER | OF | S | AM | PLES | 34 | / | | | | | GEOLO | GIST'S NAME | 3 | 98 | 2 | 21 | 0 | | PHO | NE | N | JMI | BEF | R_ | | | | | | _PI | RO. | JEC | TN | AME O | R NUMBER_ | | | | | Samples
Type | #
Samples | Sample Numbers
(Series) | Cu | Pb | Zn | Mo | Ag | Cd | Ni | ELEI | MEN
Mn | TS 1 | TO B | E AI | NAL | YZEI | F | Au | As | Hg | Sn | Sb | Ba | E spec | Neutron
Activation | DCP | Ore
test | | | P | 34 | 88-533 | Cu | Pb | Zn | Mo | Ag | Cd | NI | Co | Mn | Fe | 8) | V | U | W | F | Au | As | Hg | Sa | Sb | Ba | E spec | Neutron
Activation | DCP | ore
test | | | 10 1 | 1 | 545 5501 | Cti | Pb | Zn | Mo | Ad | Cd | Ni | Co | Min | Fe | Bi | V | u | W | F | Au | As- | Hg | Sn | Sb | ga | E spec | Neutron
Activation | OCP | ore
test | E | | | 1 | 720 725) | Cu | Ph | Zn | Mo | Ag | Cd | NI | Co | Mn | Fe | 81 | ¥ | U | W | F | Au | As | Hg | Sn | Sh | Ba | E spec | Neutron
Activation | DCP | ore
test | | | | | | Cu | Pb | Zn | Mo | Äŋ | 63 | NI. | Ce | Mn | Fe | Bi | V | U | W | F | Air | As | Hg | Sa | Sb | Ba | E spec | Neutron
Activation | DCP | are
test | | | | | | Cu | Pb | Zn | Mo | Ag | CH | NI | Co | Min | Fe | Bi | V | U | W | F | Au | As | Hg | Sn | Sb | Ba | E spec | Neutron
Activation | DCP | ore
test | | | | | | Cu | Pb | Zn | Wo | Ag | Cd | NI | Co | Min | Fe | 81 | ٧ | U | W | F | Au | As | Hg | Sn | St | Ва | E spec | Neutron
Activation | DCP | ore
test | | | | | | Cu | Pb | Zn | Mo | Ag | Cd | Ni | Co | Mn | Fe | 81 | ٧ | U | W | F | Au | As | Hg | Sn | Sb | 9a | E spec | Neutron
Activation | DCP | ore
lest | | | | | | Cu | Pb | Zn | Win . | Ag | 60 | NI | Co | Ma | Fe. | 81 | V | U | W | F | Au | As | Hģ | Sn | Sh | Ba | E spec | Neutron
Activation | DCP | ore
test | | | | | | Cu | Pb | Zn | Mo: | Ag | CH | Ni | Ca | VIn | Fe | 81 | V | U | W | F | Au | As | Hg | Sn | Sb | Ba | E spec | Neutron
Activation | DOP | ore
lest | | | | | | Cu | Pb | Zn | Ma | Ag | Cd | NI | Co | Min | Fe | 81 | ٧. | U | W | F | Aa. | As | нд | Sa | Sh | 88 | E spec | Neutron
Activation | DCP | test | | | | | | Cu | Ph | 211 | Mo. | Ag | Cd | NI | Co | Mn | Fe | Bi | ٧ | U | W | F | Au | As | Hŋ | Sn. | Sh | 89 | Espec | Neutron
Activation | DCP | ore
test | | | | | | Cu | Pb | Zn | Mo | Ag | Cd | NI | Co | Mn | Fe | 81 | V | U | W | H. | Au | As | Hg | Śn | Sh | 88 | E spec | Neutron
Activation | DCF | ore
lest | | | | | | Cu | Pb. | Zn | Mo | Ag | Cd | NI | Co | Vin | Fit | 81 | V | U | W | F | Au | As | Hg | Sn | Sb | Ba | E spec | Neutron
Activation | DCP | test | | | | | | Cu | Pb | Zn | Mo | Ag | Cd | NI - | Co | Mn | Fe | ВІ | ٧ | U | W | F | Au | As | Hg | Sn | Sh | 98 | E spec | Neutron
Activation | DCP | ore
test | | | | | | Cu | Ph | Zn | Mo | Ag | Cd | NI | Co | Mn | Fe | 81 | ٧ | U | W | F | Au | As | lig | Sn | Sh | 88 | E spes | Neutron
Activation | DCP | ore
test | | | | Please | analyze by | 1 | | | | | , or | | | | | | | | } | n | neth | nod | s, 1 | the | en | clo | sed | f prepar | | } | samples | | | | | | | | | em | ical | (bt | om, | , tra | ace | le' | vei) | | , | | | | | | | | X | unprep | pared | | | | C | | ASSAY GEOCHEMICAL (| | | | | | | | | | | | | Ü | 4 | - | DI C | ACE | INI | DIC | ATE | c A | MP | - | nen | nei | TIO | NI I | | | | | | | | | | | COARSE REJECTS | | | | | | | , | LLC | HOE | . 114 | טוט | AIC | OH | AIVIE | LEI | JIST | USI | 110 | 14 | | | PI | ULPS | | | | | | | D AFTER ANALYSIS COM | | | CTC | ANALYSIS CO | | ETE | | | | | 60
DAYS-DISCARD | CUIV | /IFL | EIE | RETURN COD | 3 COMIT L | LIL | | | Si | ORAGE CH | HARGE WILL BE ASSESS | ED | AFT | ER | 60 [| YAC | S | | | | | | | | | | | | S | TOF | RAGI | E CH | HARGE V | WILL BE ASSE | SSED AF | TER 1 Y | EAR | | | | | | | | | | RE | SUL | TS, | INV | VOI | CES | AN | D S | SAM | PLE | ST |) BI | E SE | ENT | TO: | | | | | | | | | Paculto | Im. BA | | 12 | | ~ | 1 | | | | | | | | | | | Pos | ulte | | | | | | | | | | | | | Broken I | TO ST | | | | | | | | | | | | | nejects. | | | | | | -1 | | | | | | | | | | | nej | octs | | 3 | Rejects. | | 1 | | | | | | | | | | - | | | | | Rej | ects | _ | | | | | | | | | | | Date S | hipped | | 1 | | - | | | | | | | VO.1. | | | | | 16 | Jaic | 1 | 0 | r L | Collect | | | | |---|---|---|------|--|----------------------------|------------|-------------|-----|--------------|--------------|--------|----------|-----------|------|--|-------------|----------------------------|--|---|-------------------------------------|--------------------|---|---|--|---------------------------------|------| | | | els in Shipment | 6 | | | | | | GEOLOG | GIST'S NAME | 1 | 4 | RA | 60 | - | F | РНО | NE | NUN | IBER | R_ | | | | | P | RO. | JEC | TN | AME O | R NUMBER | | | | | ples | #
Samples | Sample Numbers
(Series) | Cu | Ph | 7n | Mo | An | Cd | E
Ni I | LEM
Co. N | ENTS | TO E | E AI | VALY | ZED | F | u A | s Hn | Sn | Sb | Ва | E spec | Neutron
Activation | DCP | Ore
test | | | ne l | Samples | 129 522 | | | | | | | T | | T | T | Ė | | | X | | 119 | | | | | Nautron | | are | | | | | 00000 | Cu | Pb | Zn | Mo | Ag | Cd | NET C | o M | n Fe | 81 | V | U | W | 1 A | ų As | Hg | Sil | Sh | ва | Espec | Activation
Neutron | DCP | test | | | - | | 700 705 | Cu | Pb | Zn | Mo | Ag | Cd | NI C | 8 M | n Fe | 8) | ٧ | U | W | FA | I As | Hg | Sn | Sb | Ва | E spec | Activation | DCP | test | | | | | 1195 1300 | Cu | Pb | Zn. | Mo | Ag | Cd | Ni C | o M | n Fe | Bi | V | U. | W | FA | J As | Hg | Sn | Sb | Ва | E spec | Neutron
Activation | DCP | test | | | | | | Cu | Pti | Zn | Mo | Ag | Cd | NI C | b M | n Fe | Bi | V | U | W | P. A | ı As | Ha | Sn | Str | 8a | £ spec | Neutron
Activation | DCP | test | | | | | | Cu | Pb | Zn | Mo | An | Cd. | Ni C | o M | n Fe | 81 | V | U | W. | FA | I As | Ha | Sn | Sh | Ba | E spec | - Neutron
Activation | DCP | ore
test | | | 1 | | | Co | Pb | Zn | Mo | Atτ | Co | Ni C | o M | n Fe | AI. | V | | w | FA | . 6: | Har | 80 | Sh | Ra | Espec | Neutron
Activation | DOP | gre
fest | TAY. | | + | | | 011 | | | | | | | | | 1077 | - | | | | | 134 | 2011 | 0.0 | 100 | | Neutron | | ore | | | + | | | Cu | Pb | Zn | VIO | Ag | Cd | NI C | 0 1 | n Fe | 81 | V | U | W | FA | 1 As | 相 | 20 | 50 | Ba | E spac | Activation | DCP | test | | | - | | | Cu | Pb | Zn | Ma | Ag | Cd | NI C | 0 M | n Fe | Bi | V | U | W | FA | A As | Hg | Sn | Sh | 83 | E spec | Activation | BCP | test . | | | | | | Cu | Pb | Zn | Ma | Ag | Cu | NI C | 0 M | n Fe | BI | V | U | W | FA | I As | Hg | Sn | Sb | Ba | E spec | Neutron
Activation | DCP | lest | | | | | | 03 | Pb | Zn | Ma | Ag | Cd | NI C | 0 M | n Fe | 8) | V | U | W | FA | ı As | Hg | Sn | Sh | Ва | E spec | Neutron
Activation | DCP | test | | | | | | Cu | Ph | Zn | Wo | Ag | 03 | NI O | o M | n Fe | Bi | V | U | W | FA | i As | Ha | Sn | Sb | Ba | E spec | Neutron
Activation | ВСР | ere
(est | | | 1 | | | 0 | Ph | Zn | Ma | A de | Cal | at o | o M | 0 50 | (2) | 11 | 11 | LAY | c 1 | A. | - Un | 0 | es. | D.a. | E anna | Neutran | DCP | ore
test | | | + | | | Cu | | | | HE | 50 | | | 11 110 | 101 | | U | 5.6 | | 1 145 | rig | OH | ou | DE | E spec | Activation
Neutron | | ore | | | | | | Cu | Ph | Zn | MO. | Aq. | Cd | NI C | B. M | n Fe | Bi | V | U | W | FA | 1 A5 | Hg | Sil | Sh | Ba | Espec | Activation | DCP | test | | | Т | | | | | | | | | | | | | | | | 1 | | | | | | | Moutepo | | 910 | | | | | | Cu | Ph | Zn | Vio | Ag | Cd | NI C | 0 M | n Fe | Bi | ٧ | IJ | W | FA | As | Hg | Sn | Sta | Ва | E spec | Neutron
Activation | DCP | test | | | | Please | analyze by | | Pb | Zn | Me | | | e gr | ade | | 81 | v | U | w
W | F A | As As | Hg
Hg | Sn | Sb Sb | Ba
Ba | E spec | Activation Neutron Activation prepar | DCP
red | | samp | | | | analyze by { ASSAY GEOCHEMICAL | | Pb | ass
geo | ay | | | e gr | ade | in Fe | Bi
Bi | v
vel) | U | w w | F A | As As | Hg
Hg | Sn | Sb end | Ba
Ba
clos | E spec | Activation Neutron Activation prepar | DCP
red | test | samp | | | DO NOT | | | Pb | ass
geo | ay | | | e gr | ade | | Bi
Bi | v vel) | U | w
 | F A | As As | Hg
Hg | Sn | Str Str | Ba
Ba
Clos | E spec | Activation Neutron Activation prepar | DCP
red | test | samp | | | DO NOT | ASSAY GEOCHEMICAL | | Pb | ass
geo | ay | | | e gr | ade | | Bi
Bi | v
vel) | U | W W | F A | As As | Hg
Hg | Sn | Sb | Ba
Ba
Clos | E spec | Activation Neutron Activation prepar | DCP
red | test | samp | | | DO NOT | ASSAY GEOCHEMICAL | | Pb | ass
geo | ay | | | e gr | rade
m, | trace | | | | W W W W W W W W W W | | | | | Sb | Ba
Ba
Clos | E spec | Activation Neutron Activation prepar | DCP
red | test | samp | | | DO NOT | ASSAY GEOCHEMICAL | | Pb | ass
geo | ay | | | e gr | rade
m, | | | | | W W W | | | | | Sb end | Ba
Ba
Clos | E spec | Activation Neutron Activation prepar | DCP
red | test | samp | | OM | DO NOT | ASSAY GEOCHEMICAL COARSE REJECTS AFTER ANALYSIS COM | OVE | Pb | ass | ay | | | e gr | rade
m, | trace | | | | \w\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | | N C | DISC | ARE | sed [| Activation Neutron Activation Prepar unprepar unprepar Activation | pop ed pared | test
ore
lest | samp | | ON | DO NOT | COARSE REJECTS AFTER ANALYSIS COM COD AFTER ANALYSIS | OVE | Pb | ass | ay | | | e gr | rade
m, | trace | | | | W W W P P P P P P P | | | SITIO | N [] [] F | DISC | ARC | sed [P AFTER COD AI | Activation Neptron Activation Prepar unprep | pop ed pared | test
ore
lest | samp | | 200 | DO NOT MMENTS DISCARE RETURN STORE 6 | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS O DAYS-DISCARD | OVE | RLIM | ass
geo
MITS | ay | emi | cal | e gr | rade
m, | trace | | | | W W W W P P P P P | | | GITIO | N [] [] F [] S | DISC | ARCIRN TRE 1 | sed Pin After COD AI YEAR- | Activation Neptron Activation Prepar unprep ANALYSIS CO FTER ANALYSIS RETURN COD | DOPPERED DATE OF THE PROPERTY | test ore rest | | | ON | DO NOT MMENTS DISCARE RETURN STORE 6 | COARSE REJECTS AFTER ANALYSIS COM COD AFTER ANALYSIS | OVE | RLIM | ass
geo
MITS | ay | emi | cal | e gr | rade
m, | trace | | | | w w w } | | | GITIO | N [] [] F [] S | DISC | ARCIRN TRE 1 | sed Pin After COD AI YEAR- | Activation Neptron Activation Prepar unprep | DOPPERED DATE OF THE PROPERTY | test ore rest | | | ON
I | DO NOT MMENTS DISCARE RETURN STORE 6 | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS O DAYS-DISCARD | OVE | RLIM | ass
geo
MITS | ay | emi | cal | e gr
(pp | m, | trace | NDIC | ATE | SAM | | E
DIS | SPOS | S | N I C | DISC | ARE
IRN
RE 1 | sed Pin After COD AI YEAR- | Activation Neptron Activation Prepar unprep ANALYSIS CO FTER ANALYSIS RETURN COD | DOPPERED DATE OF THE PROPERTY | test ore rest | | | ON
D
D
T
C | DO NOT
IMENTS .
DISCARE
RETURN
STORE 6
RAGE CH | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS O DAYS-DISCARD HARGE WILL BE ASSESS | OVER | RLIM | ass
geo
MITS | ay oche | emi
DAYS | RES | e gr
(ppi | m, | SSE IN | NDIC | ATE | SAM | AMP | E DIS | то в | SITIO S | N C F S TOP | DISC
RETU | ARE 1 | sed PP AFTER COD AI YEAR-IARGE V | Activation Neutron Activation Prepar unprepar analysis conference Analysis Conference Analysis Return Cod Will Be Asse | DOPPERED DATE DMPLETE S COMPL SSED AF | test ore test | 'EAR | | MOS | DISCARE RETURN STORE 6 RAGE CH | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS D DAYS-DISCARD HARGE WILL BE ASSESS | OVE | Pb P | ass
geo
MITS
ETE | Mo ay oche | DAYS | RES | e gr
(pp | m, | SE IN | NDIC | ATE | SAM | AMP | E DIS | TO E | S S S S S S S S S S S S S S S S S S S | N I C I S TOP | DISC
RETU
STOR
RAGE
TO: | ARE
JRN
E CH | sed Pin AFTER COD AI YEAR-IARGE V | Activation Neutron Activation Prepar unprepar unprepar ANALYSIS COFTER ANALYSIS COFTER ANALYSIS RETURN COD WILL BE ASSE | DOPPERED DATE OF THE PROPERTY | test ore lest | /EAR | | ONO: | DISCARE RETURN STORE 6 RAGE CH | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS DO DAYS-DISCARD HARGE WILL BE ASSESS | OVE | Pb | ass
geo
MITS
EETE | Mo ay oche | DAYS | RES | e gr
(pp | m, | SE IN | NDIC | ATE | SAM | AMP | LES In | TO E esulti | SS | N C C C C C C C C C C C C C C C C C C C | DISC
RETU
STOP
RAGE | ARE
IRN
E CH | sed Pi AFTER COD AI YEAR-IARGE V | Activation Neutron Activation Prepar unprepar analysis conference Analysis Conference Analysis Return Cod Will Be Asse | DOPPERED OMPLETE S COMPL SSED AF | test ore rest. | /EAR | | 3 | DISCARE RETURN STORE 6 RAGE CH | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS D DAYS-DISCARD HARGE WILL BE ASSESS | OVE | RLIM | ass
geo
MITS
ETE | Mo ay oche | emil OAYS | RES | e gr
(pp | m, | SE IN | NDIC | ATE | SAM | AMP | LES R | TO E esultivoic ulps | S S S S S S S S S S S S S S S S S S S | N D C S TOP | DISC
RETU
STOF
AGE | ARE
IRN
E CH | sed PP AFTER COD AI YEAR-IARGE V | Activation Neptron Activation Prepar unprepar ANALYSIS CONTER ANALYSIS CONTER ANALYSIS CONTER ANALYSIS CONTER ANALYSIS RETURN COD WILL BE ASSE | DOPPered DOMPLETE DOM | test ore iest } | 'EAR | | STO | DISCARE RETURN STORE 6 RAGE CH Results _ Invoices Pulps Rejects _ | COARSE REJECTS O AFTER ANALYSIS COM COD AFTER ANALYSIS O DAYS-DISCARD HARGE WILL BE ASSESS | OVER | Pb 3 3 RLIM | ass
geo
MITS
EETE | Mo ay ocho | emi
DAYS | RES | e gr
(ppi | m, | SSE IN | NDIC | ATE | SAM | AMP | LES R | TO E esultivoic ulps eject | SBE SI | N [] [] FI STOP | DISC
RETU
STOP
RAGE
TO: | ARE
IRN
E CH | e spec Per p | Activation Neutron Activation Prepar ULPS ANALYSIS COFTER ANALYSIS RETURN COD WILL BE ASSE | DOPPeed Dared DMPLETE S COMPL SSED AF | test ore lest | /EAR | | STO | DISCARE RETURN STORE 6 RAGE CH Results _ Invoices Pulps Rejects _ Results _ | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS D DAYS-DISCARD HARGE WILL BE ASSESS | OVER | RLIM | ass
geo
MITS | Mo ay ocho | DAYS | RES | e gr
(ppl | m, | SSE IN | NDIC | ATE | SAM | | LES R I Ir | TO I esultivoic ulps eject | SBE SI | N C F F F F F F F F F F F F F F F F F F | DISC
RETU
STOR
AGE
TO: | ARE
JRN
E CH | sed Pin AFTER COD AI YEAR-IARGE V | Activation Neutron Activation Prepar ULPS ANALYSIS COFTER ANALYSIS RETURN COD WILL BE ASSE | DOPPERED DATE OF THE PROPERTY | test ore lest } LETE TER 1 Y | /EAR | | COM | DISCARE RETURN STORE 6 RAGE CH Results _ Invoices Pulps Rejects _ Results _ Invoice _ | COARSE REJECTS O AFTER ANALYSIS COM COD AFTER ANALYSIS O DAYS-DISCARD HARGE WILL BE ASSESS | OVER | RLIM | ass
geo
MITS | Mo ay oche | DAYS | RES | e gr
(ppi | m, | SE IN | NDIC | ATE | SAM | AMP | LES R I I R | TO E esultivoic ulps eject | SBE SI | N I C I F I S T T O F | DISC
RETU
BTOF
RAGE
TO: | ARE
JRN
RE 1 | sed Pi AFTER COD AI YEAR-IARGE V | Activation Neutron Activation Prepar ULPS ANALYSIS COFTER ANALYSIS RETURN COD WILL BE ASSE | DMPLETE
S COMPL
SSED AF | test ore lest } LETE TER 1 Y | | | | # Parc | els in Shipment | | | 4 | | | | | | | | | | TO | IA | L IN | UIV | BE | R | OF ! | SAI | MPLE | S | | 44 | | | |---|---|--|-------------|-------|----------------------------|------------|------|------|-------|------|-------|-------|----------|-----------|------|---|-------|--|--|----------|--|---------------------------------------|--|------------------
--|--|------------------------------|------| | | GEOLOG | GIST'S NAME | 24 | 1K | R | 01 | 1 | / | PHO | ONE | NI | UMI | BEF | - | | | | | | PR | OJE | СТ | NAME | OF | R NUMBER_ | | | | | es | #
Samples | Sample Numbers
(Series) | | - 50 | | | .0 | | | ELEI | MEN | ITS 1 | го в | EAN | IALY | ZED | 1 | | | | | | a E sp | _ | Neutron
Activation | DCP | Ore
test | | | | 46 | X89533 | Cu | Pb | Zn | Mo | Ag | Cd | Ni | Co | Ma | Fe | Bi | V | u | W | F | X | As H | ig S | in S | n B | E spe | 36 | Neutron
Activation | DCP | bre
test | | | T | | 1200/205 | Cu | Plt | Zn | N/O | an. | CH | Né | Cn | Men | Fe | Ri | V | 11 | w | F . | 0.11 | Ac-14 | in S | 2 2 | R | Espe | 10 | Neutron
Activation | DCP | ore
lest | | | + | | | 00 | 17.17 | - | | ony. | O.U. | 142 | | | - | | | | | | 1 | 22 | y o | | | | | Neutron | | pre | | | + | | 1425 1430 | Cu | Ph | Zn | Me | Ag | Cd | NI | Co | Min. | l-e | 13) | V | U | W | F | Au / | AS H | 9 8 | in is | 0 8 | Espe | eg. | Activation
Neutron | DCP | test | | | + | | | Cu | Pb | Zn | Mo | Ag | Cd | M | Co | Mn | Fe | Bi | V | U | W | F | Au I | AS H | g S | in S | 8: | E spi | 20 | Activation | DCP | lest | | | | | | Ċш | Pb | Zn | Mo. | Ag | Cd | NI. | Co | Mn. | Fe | 9i | V | U | W | F | An I | As H | ig S | in S | B | E sps | 0. | Neutron
Activation | DCP | test | | | | | | Cu | Pb | Zn | Ma | Ag | CH | Ni | Co | Min | Fe | Bi | V | U | W | F | Au / | As H | g s | in S | b B. | Espo | 35 | Meutron
Activation | DCP | ore
test | | | | | | Cu | Ph | 7m | Mes | Acr | Cd | 811 | Co | Min | Fa | Bi | V | 11 | Vid. | 5 | An I | Ic H | 0 0 | n 9 | n R | E spi | ,, | Neutron
Activation | DCP | ore | | | + | | | 00 | | 2.11 | IIIU | - H | ou. | 141 | 0.0 | 1011 | | 101 | 7 | | ** | | (442) | 10 11 | 9 0 | | | | 1 | Neutron | | ore | | | + | | | Cu | Pb | Zn | Mo | Ag | Cd | Ni | Co | With. | Fe | Bi | V | П | W | F | Au I | AS M | g S | a 8 | D 8: | E spe | 38 | Activation Neutron | OCP | test | | | - | | | Cu | Pb. | Zn | Ma | Ag | Cd | M | Co | Mn | Fe | Bi | V | U | W | F | Au / | As H | g S | n S | b B: | Espe | 10 | Activation - | DEP | test | | | | | | Cu | Ph | Zn | Mo | Ag | Cd | Ni | Co | Min | Fe | Bi | ٧ | U | W | F | Au | Ns H | g s | n S | B: | E spe | 10 | Neutron
Activation | DCP | tes! | | | | | | Cir | Pb | Zn | Ma | Ag | Cd | Ni | Co | Ma | Fe | Bi | V | U | w | F | Au / | As H | in S | n S | B: | Espe | ic. | Neutron
Activation | DCP | ore
test | | | T | 4 | | Cu. | ph | Zn | Ma | A co | CR | Mi | Co | Mes | Fo | RI | V | 18 | VAI | F | 10 | 10 14 | in R | nc | 1 12 | Espe | 7- | Neutron
Activation | DCP | ore
test | | | + | | | te ti | P. II | | | C.B. | - Lu | 101 | Lett | HOL | 1.0 | LPI | X | | 39 | | nu r | 12 11 | 143 67 | 11. 13 | 1 21 | | | Neulron | | 310 | | | + | | | Cu | Pa | Zn | Ma | Ag | Ed | NI | Co | Ma | Fe | 163 | V | U | W | F | AU F | RS H | 9 8 | n S | 1 13 | E spe | 0 | Activation | DCP | test | ore | 1 | | + | | | Cu | Ph. | Zn | Mo | Ag | Cd | Ni | Ce | Vin | Fe | Bi | ٧ | U | W | F | AU- | As H | g S | n S | Bi | E spt | d | Activation | DCP | test | | | 1 | Please | analyze by { | | Pb | ass | Ma | | | | | | | Bi
Bi | V | U | w . | F me | Au ethe | ods | ig S | in S | Ba Ba | E spe | c C | Neutron
Activation Prepare | DCP | | samı | | | | analyze by { ASSAY GEOCHEMICAL (| | Pb | ass | say | | | | | | | Bi
Bi | v
vel) | U | w . | F | Au ethe | As H | ig S | in Sin Sin Sin e e | Ba Ba | E spe | C | Neutron
Activation Prepar | DCP | test | sam | |] | DO NOT | | OVER | RLIN | ass
geo | say | em | ical | (p | | | | Bi
Bi | v
vel) | U | w w | F me | Au / | As H | ig S | in Sin Sin Sin Sin Sin Sin Sin Sin Sin S | B B B B B B B B B B B B B B B B B B B | E spe | c C | Neutron
Activation Prepare | DCP | test | sam | |] | DO NOT | ASSAY GEOCHEMICAL C | OVER | RLIN | ass
geo | say | em | ical | (p | | | | Bi
Bi | v vel) | U | w w | F | Au | as H | ig S | in Sine e | Ba Ba | E spe | c C | Neutron
Activation Prepare | DCP | test | samı | |] | DO NOT | ASSAY GEOCHEMICAL C | OVER | RLIN | ass
geo | say | em | ical | l (pi | pm. | , tra | ace | | | | } | | | | | | Ban Bannel | E spe | c C | Neutron
Activation Prepare | DCP | test | sam | | | DO NOT | ASSAY GEOCHEMICAL (| OVER | RLIN | ass
geo | say | em | ical | l (pi | pm. | , tra | ace | | | | \w\ | | | ods. | | | B B B B B B B B B B B B B B B B B B B | Espe | | Activation Neutron Activation prepar unprep | DCP | test | samı | | ONO | DO NOT | ASSAY GEOCHEMICAL C | DVE | RLIM | ass
geo | say | em | ical | l (pi | pm. | , tra | ace | | | | W W W P P P P P P P | | | DSITI | ION | | | Espe | PU | Neutron
Activation Prepare | ed
pared | test ore test | sam | |)
ON | DO NOT | ASSAY GEOCHEMICAL O | OVE | Ph | ass | say | em | ical | l (pi | pm. | , tra | ace | | | | W W | | | DSITI | ION | DIS | CCAF | e special posed | PL | Activation Neutron Activation prepar unprep | DEP ed pared | lest
ore
test | sam | |)
ON | DO NOT MMENTS DISCARE RETURN STORE 6 | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS O DAYS-DISCARD | DVEF | RLIM | ass
geo
MITS | Mo Say och | em | ical | l (pi | pm. | , tra | ace | | | | W W W P P P P P P P | | | DSITI | IION | DIS RE ST | GCAI
TUR
DRE | RD AFT
N COD | PU ER AF-F | Activation Neutron Activation prepar unprep JLPS ANALYSIS CO TER ANALYSI RETURN COD | DEP
red
Dared | lest ore test | | | ON I | DO NOT MMENTS DISCARE RETURN STORE 6 | COARSE REJECTS AFTER ANALYSIS COM COD AFTER ANALYSIS | DVEF | RLIM | ass
geo
MITS | Mo Say och | em | ical | l (pi | pm. | , tra | ace | | | | W W W P P P P P P | | | DSITI | IION | DIS RE ST | GCAI
TUR
DRE | RD AFT
N COD | PU ER AF-F | Activation Neutron Activation prepar unprep JLPS ANALYSIS CO TER ANALYSIS | DEP
red
Dared | lest ore test | | | ON I | DO NOT MMENTS DISCARE RETURN STORE 6 | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS O DAYS-DISCARD | DVEF | RLIM | ass
geo
MITS | Mo Say och | em | s | l (pi | PLE | ASE | E IN | DIC | ATE | SAI | | E DI | ISP(| DSITI | ION | DIS
RE
STOORA | CCAF
TUR
DRE | RD AFT
N COD | PU ER AF-F | Activation Neutron Activation prepar unprep JLPS ANALYSIS CO TER ANALYSI RETURN COD | DEP
red
Dared | lest ore test | | |)
ON | DO NOT MMENTS DISCARE RETURN STORE 6 | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS O DAYS-DISCARD | DVEF | RLIM | ass
geo
MITS | Mo Say och | em | s | l (pi | PLE | ASE | E IN | DIC | ATE | SAI | | E DI | ISP(| DSITI | ION | DIS
RE
STOORA | CCAF
TUR
DRE | RD AFT
N COD | PU ER AF-F | Activation Neutron Activation prepar unprep JLPS ANALYSIS CO TER ANALYSI RETURN COD | DEP
red
Dared | lest ore test | | |)
ON | DISCARE
RETURN
STORE 6 | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS O DAYS-DISCARD | DVEF | RLIM | ass
geo
MITS | say
och | OAY | s RE | (p) | PLE | , tra | E IN | DIC | ATE | SAI | AMF | E DI | ISP(| DSITI | IION STO | DIS
RE
STORA | CCAF
TUR
DRE
GE (| E special spec | PL PER AF-FE W | Activation Neutron Activation prepar unprep JLPS ANALYSIS CO TER ANALYSI RETURN COD | per ded pared DMPLETE S COMP | lest ore test } | /EAR | | ON | DISCARE RETURN STORE 6 RAGE CH | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS OD DAYS-DISCARD HARGE WILL BE ASSESS | DVER | RLIM | asss geo | Mo say och | OAY | S | I (pr | PLE | (ASE | E IN | DIC | ATE | SAI | AMF | PLES | ISP(| BE ults _ | IION STO | DIS
RE
STI
ORA | CCAL
TUR
DRE
GE (| E special spec | PL ER AF-R-FE W | Activation Neutron Activation Prepar Unprepar Unprepar ANALYSIS CO TER ANALYSIS CO TER ANALYSIS RETURN COD VILL BE ASSE | DEP
red
Dared | lest ore test } | /EAR | | ON | DISCARE RETURN STORE 6 RAGE
CH | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS O DAYS-DISCARD HARGE WILL BE ASSESS | IPLE
COM | RLIM | ass
geo
MITS
ETE | Mo say och | DAY | S | I (pr | PLE | , tra | E IN | DIC | ATE | SAI | AMF | E DI | ISPO
Resulting | BE ults _ ices . s _ | IION STO | DIS
RE
STOORA | GCAR
TUR
DRE
GE (| RD AFT
N COD
1 YEAR | PU ER AF-FE W | Activation Neutron Activation Prepar Unprepar Unprepar Activation Activation Prepar Unprepar Unprep | DEP
red
pared
DMPLETE
S COMP | lest ore test } | /EAR | | ON | DISCARE RETURN STORE 6 RAGE CH | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS OD DAYS-DISCARD HARGE WILL BE ASSESS | IPLE
COM | RLIM | ass
geo
MITS
ETE | Mo say och | DAY | S | I (pr | PLE | , tra | E IN | DIC | ATE | SAI | AMF | E DI | ISPO
Resulting | BE ults _ ices . s _ | IION STO | DIS
RE
STOORA | GCAR
TUR
DRE
GE (| RD AFT
N COD
1 YEAR | PU ER AF-FE W | Activation Neutron Activation Prepar Unprepar Unprepar ANALYSIS CO TER ANALYSIS CO TER ANALYSIS RETURN COD VILL BE ASSE | DEP
red
pared
DMPLETE
S COMP | lest ore test } | /EAR | |)
ON
)
)
)
) | DISCARE RETURN STORE 6 RAGE CH Results _ Invoices Pulps _ Rejects _ | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS O DAYS-DISCARD HARGE WILL BE ASSESS | PLECOM | RLIM | ass
geo
MITS | say
och | DAY | S | I (p) | PLE | , tra | E IN | DIC | ATE | SAI | AMF | E DI | ISPO
Resulting
Pulp
Reje | BE ults _ ices . s cts _ | ION STO | DIS
RE
STORA | CCARTUR
DRE
GE (| E special spec | PL ER AF R-F E W | Activation Neutron Activation Prepar Unprepar Unprepar Activation Activation Prepar Unprepar Unprep | DEP red pared DMPLETE'S COMP | lest ore test LETE TER 1 Y | /EAR | | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | DISCARE RETURN STORE 6 RAGE CH Results _ Invoices Pulps _ Rejects _ Résults _ | COARSE REJECTS O AFTER ANALYSIS COM COD AFTER ANALYSIS O DAYS-DISCARD HARGE WILL BE ASSESS | IPLE COM | RLIM | ass
geo
MITS
EETE | say och | DAY | S | I (pr | PLE | , tra | E IN | DIC | ATE | SAI | AMF | PLES | S TO
Resultinvoi
Pulp
Reje | BE ults _ ices . s _ cts _ ults _ ults _ | ION | DIS RE STORA | GCAR
TUR
DRE
GE (| E special spec | PLUER AFR-FE W | Activation Neutron Activation Prepar Unprepar Unprepar Activation Activation Prepar Unprepar Unprep | DEP
red
Dared | lest ore test LETE TER 1 \ | /EAR | | 3 | DISCARE RETURN STORE 6 RAGE CH Results _ Invoices Pulps Rejects _ Résults _ Invoice _ | COARSE REJECTS D AFTER ANALYSIS COM COD AFTER ANALYSIS D DAYS-DISCARD HARGE WILL BE ASSESS | IPLE COM | RLIM | ass
geo
MITS | say och | DAY | S | I (pi | PLE | , tra | E IN | DIC | ATE | SAI | AMF | PLESS | ISPO
Resultation
Pulp
Reje
Resultation | BE ults _ cices . s _ cts _ ults _ ice _ s _ s _ cs _ s _ cts ct | SEM | DIS
RE
STI
ORA | GCAR
TUR
DRE
GE (| E special spec | PL ER AF.R-FE W | Activation Neutron Activation Prepar Unprepar Unprepar ANALYSIS CO TER | DOMPLETES COMP | lest ore test LETE TER 1) | /EAR | | | | hipped | 1 | | | | | | | | | | | | | | | | . 0 P | aid | | 0 | | Collect | 32 | | | |----------|---|--|--|---------|----------------------------|----------|----------------|------------|------|----------|----------|-------|----------|-------|-------------------|-------|-------------------------------------|---------------------------------|----------------|--------------|----------------------------|-------------------|---------------------------------|---|---|-----------------------------|------| | | | cels in Shipment | ZA | 0 | 2/ | 1 | | | 0116 | | | | - | T | OTA | LI | 1UN | ИBE | ER | OF | SA | M | PLES | D AUMADED | | | | | | GEOLO | GIST'S NAME | 2/1/ | KK | | | | | PHO | INE | NU | IMB | EK. | | | | | | _ ٢١ | 101 | ECI | N | AME U | R NUMBER_ | | | | | les
e | #
Samples | Sample Numbers
(Series) | Cu | Pb | Zn | Mo | Ag | Cd | Ni | Co | MENT | S TO | BE
Bi | ANA | LYZEI
J W | F | Au | As | Hg | Sn | Sb | Ва | E spec | Neutron
Activation | DCP | Ore
test | | | - | 32 | (48-533 | Cu | Pb | Zn | Me | Ag | Cd | Ni | Co | Ma F | Fe B | 1 V | 1 13 | W | F | K | As | Hg | Sta | Sb | Ва | E spec | Neutron
Activation | DCP | ore
test | | | - | | 735-740 | Cu | Pb | Zn | Mo | Ag | Cd | Ni | Co | Mn 8 | Fe E | ii l | / U | W | F | Au | As | Hg | Sn | Sb | 88 | E spec | Neutron
Activation | DCP | ore
test | | | | | 990-895 | Cu | Pb | Zn | Mo | Ag | Cd | Ni | Co | Mn F | e E | # 1 | U | w | F | Att | As | Hg | Sn : | Sh | Ва | E spec | Neutron
Activation | DCP | ore
test | | | 1 | | | Cu | Pb | Zn | Mo | An | Cd | Ni | Co | Mn s | e t | 11 1 | U | W | F | Au | As | Hg | Sn | Sti | Ви | E spec | Neutron
Activation | DCP | ore | | | | 7 | | Cu | Pb | Zn | Ma | An | Cd | MI | Co | Mn 8 | Fe E | i l | U | W | F | Au | Ass | Ho | Sa | Sb | Ba | E spec | Neutron
Activation | DCP | ore | | | 1 | | | Cu | Pla | Zn | Ma | Au | Ed | NI | Co | Mn F | e I | 81 1 | 1 0 | w | F | Au | As | Ho | Sn | Sb | Ва | Espec | Neutron
Activation | DCP | ore
test | | | | 2 1 | | Cu | Pb | 70 | Mn | An | Cel | Mi | Cn | Man (| Fa F | | 111 | w | F | Azz | Ac. | Hin | Sn | Sh | Ba | E spec | Neutron
Activation | DCP | ore | | | | | | C. | Dh. | 7n | Ma | ón. | C-A | aut | Co | Mo | | | 111 | w | E | X to | An . | Mer | Sn. | gh. | Ra | | Neutron
Activation | DCP | ore | | | + | | | 00 | 01 | 7 | 1112 | A. | C.d. | 617 | St. | Mar . | | 1 | | 141 | - | A.u. | 5.0 | u _a | Cr | c). | Die. | E spec | Neutron | DCP | ore | | | + | | | UU. | Pb. | 0.01 | mu. | 49 | 0.1 | MI | 0. | WILL ST | 2 | | | 44 | - | Ph.C. | P1.5 | ny . | Sn | 00 | od . | E spec | Activation
Neutron | | lest
ore | 1 | | + | | | Cu | Po | Zn | Ma | Ag | Cd | NI | Co | Ma i | 8 8 | 31 \ | 1 0 | W | 1 | Au | AS | rig | SR | 80 | Ba | E spec | Activation
Neutron | DCP | test | | | + | | | Cu | Pb | Zn | MO | Ag | Ed- | NI | Co | Mn F | e E | 31 1 | 1 0 | W | F | Au | AS | Hg. | Sn . | Sta | Ва | Espec | Activation
Neutron | DCP | test | | | + | | | Cu | Pb. | Zn | Mo | Ag | Cd | MI | Co | Mn F | e 8 | 31 1 | / U | W | F | Au | As | Hg | Sn | Sb | Ba | E spec | Activation
Neutron | DCP | lest
ore | | | 4 | | | Cu | Pb | Zn | Mo | Ag | Cd. | Ni | Co | Vin F | Fe E | 1 13 | F U | W | F | ALL | As | Hg : | Sn. | Sb | BB | Espec | Activation | DCP | test | | | | | | | | | | | | | | | | | | - | | | | | | | | | Neutran | | ore | | | | | 1 | Cu | Pb | Zn
Zn | Mo
Mo | Ag
Ag
(% | Cd
Cd | e g | Co
Co | Ma / | Fe E | 31 1 | / 0 | W | F | Au | As
As | Hg | Sn
Sn | Sb | Ba
Ba | E spec | Neutron Activation Neutron Activation prepar | DCP
DCP
red | ore
test
ore
test | | | | Please | analyze by { | Cu | Pb | | | Ag (% | or, or | | | Ma lide) | Fe E | leve | el) | w w | F
| Au | As | Hg
Hg | Sn
Sn | Sta
Sta | Ba
Ba | E spec | Activation
Neutron
Activation | DCP | test | sam | | | DO NOT | ASSAY GEOCHEMICAL | | Ph | geo | och | Ag (% | or, or | | | | Fe E | leve | el) | w w | F | Au | As | Hg
Hg | Sn
Sn | Sta
Sta | Ba
Ba | E spec | Activation Neutron Activation prepar | DCP | test | sam | | | | ASSAY GEOCHEMICAL | | Ph | geo | och | Ag (% | or, or | | | | Fe E | leve | el) | w } | F | Au | As
As | Hg
Hg | Sn
Sn | Sta
Sta
enc | Ba
Ba | E spec | Activation Neutron Activation prepar | DCP | test | sam | | | DO NOT | ASSAY GEOCHEMICAL | | Ph | geo | och | Ag (% | or, or | | | | Fe B | leve | / U | } | F | Au | As
aod | Hg
Hg | Sn
Sn | Sta Sta | Ba | E spec | Activation Neutron Activation prepar | DCP | test | sam | | COM | DO NOT | ASSAY GEOCHEMICAL | OVE | Ph | geo | och
S | Ag (% | or, or | (pr | pm, | , tra | | | | W W W AMP | | | | TIOI | N D | ISC | ARC | sed (C | Activation Neutron Activation prepar | DEP
ed
pared | test ore test | sam | | COM | DO NOT
MMENTS
DISCARI
RETURN
STORE 6 | COARSE REJECTS D AFTER ANALYSIS COI I COD AFTER ANALYSIS 60 DAYS-DISCARD | OVE | RLIM | geo | och S | Ag (% em | cd cd | (pr | pm, | , tra | | | | W W | | | | TIOI | N D R S | IISC/ | ARCIRN RE 1 | sed Cod Al | Activation Neutron Activation Prepar unprep | DEP
red
pared | lest ore test | | | COM | DO NOT
MMENTS
DISCARI
RETURN
STORE 6 | COARSE REJECTS D AFTER ANALYSIS COI | OVE | RLIM | geo | och S | Ag (% em | on or ical | (p) | PLE | ASE | IND | IICA' | TTE S | | LE | DISP | OSI | TION | N D R S STOR | IISC/
ETU
TOR
AGE | ARCIRN RE 1 | sed Cod Al | Activation Neutron Activation prepar unpreg | DEP
red
pared | lest ore test | | | COM | DISCARI
RETURN
STORE 6 | COARSE REJECTS D AFTER ANALYSIS COI I COD AFTER ANALYSIS 60 DAYS-DISCARD HARGE WILL BE ASSES | OVEI
OVEI
MPLE
COM
SED | RLIM | gec
MITS
EETE | 60 I | Ag (% em | on or ical | (p) | PLE | ASE | IND | IICA' | TTE S | W W AMP | LE | DISP | OSI | TION | N D R S STOR | IISC/
ETU
TOR
AGE | ARCIRN RE 1 | sed Cod Al | Activation Neutron Activation Prepar unprep | DEP
red
pared | lest ore test | | | COM | DISCARI
RETURN
STORE 6 | COARSE REJECTS D AFTER ANALYSIS COI I COD AFTER ANALYSIS 60 DAYS-DISCARD HARGE WILL BE ASSES | OVEI
OVEI
MPLE
COM
SED | RLIM | gec
MITS
EETE | 60 I | Ag (% em | on or ical | (p) | PLE | ASE | IND | IICA' | TTE S | SAM | LE (| DISP | OSI | TION ST | N D R S STOR | TO: | ARE
RN
E 1 | sed Cod After COD After HARGE N | Activation Neutron Activation Prepar unprep | peed pared DMPLETE'S COMPI | lest ore test } | /EAR | | COM | DISCARI
RETURN
STORE (C)
Results .
Invoices | COARSE REJECTS D AFTER ANALYSIS GO DAYS-DISCARD HARGE WILL BE ASSES | OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI
OVEI | RLIM | gec
MITS
EETE
EER | 60 E | Ag (%) | od cal | (pp | PLE TS. | ASE | IND | ES A | TTE S | SAM | PLE | S TO | OSI
O BE | TION ST | N D R S STOR | ISCA
ETU
TOR
AGE | ARE
RN
EE 1 | sed Cod Al YEAR-HARGE | Activation Neutron Activation Prepar unprep | DEP
red
pared
DMPLETE
S COMPI | lest ore test LETE TER 1 Y | /EAR | | COM | DISCARI
RETURN
STORE 6
PRAGE CH | COARSE REJECTS D AFTER ANALYSIS COI I COD AFTER ANALYSIS 60 DAYS-DISCARD HARGE WILL BE ASSES | OVER OVER OVER OVER OVER OVER OVER OVER | RLIM | gec
MITS
EETE
EER | 60 t | (% em | s RE | (pp | PLE | ASE | IND | ES A | TTE S | SAM | PLE | S TO | OSI OBE ults pices | TION ST | D R S TOR | TO: | ARE
RN
E 1 | sed Cod After COD After HARGE | Activation Neutron Activation Prepar unprepar unprepar ANALYSIS CO FTER ANALYSIS RETURN COD WILL BE ASSE | DEP
red
pared
DMPLETE
S COMPI | lest ore test } | /EAR | | COM | DISCARI
RETURN
STORE 6
PRAGE CH | COARSE REJECTS D AFTER ANALYSIS GO DAYS-DISCARD HARGE WILL BE ASSES | OVER OVER OVER OVER OVER OVER OVER OVER | RLIM | gec
MITS
EETE
EER | 60 t | (% em | s RE | (pp | PLE | ASE | IND | ES A | TTE S | SAM | PLE | S TO | OSI OBE ults pices | TION ST | D R S TOR | TO: | ARE
RN
E 1 | sed Cod After COD After HARGE | Activation Neutron Activation Prepar unprep | DEP
red
pared
DMPLETE
S COMPI | lest ore test } | /EAR | | COM | DISCARI RETURN STORE CO Results . Invoices Pulps Rejects . | COARSE REJECTS D AFTER ANALYSIS COI I COD AFTER ANALYSIS 60 DAYS-DISCARD HARGE WILL BE ASSES | OVER OVER OVER OVER OVER OVER OVER OVER | RLIM | ged
MITS
ETE | 60 t | (% em | s RE | SUL | PLE | ASE | IND | ES A | TTE S | SAM | PLE (| S TO
Res
Invo
Puli
Rejo | OSI D BE ults pices pects ults | TION ST | N D R S STOR | TO: | ARE
RN
E 1 | sed Cod After COD After HARGE V | Activation Neutron Activation Prepar unprepar unprepar ACTIVATION NULPS RANALYSIS COFTER ANALYSIS RETURN COD WILL BE ASSE | DEP
red
pared
DMPLETE
S COMPI | lest ore test } } | /EAR | | COM | DISCARI
RETURN
STORE (C)
Results
Invoices
Pulps
Rejects
Résults
Invoice | COARSE REJECTS D AFTER ANALYSIS COI I COD AFTER ANALYSIS 60 DAYS-DISCARD HARGE WILL BE ASSES | OVER OVER OVER OVER OVER OVER OVER OVER | RLIMPLI | ged
MITS
ETE
ER | 60 t | (% em | s RE | (PP | PLE TS. | ASE | /OICI | ES A | TTE S | SAM | PLE (| S TO
Res
Invo
Puli
Rejo | OSI D BE ults bices | TION ST | D R S STOR | TO: | ARE
RN
RE 1 | sed Cod Alyeare | Activation Neutron Activation Prepar unprepar unprepar Activation ULPS RANALYSIS COFTER ANALYSIS RETURN COD WILL BE ASSE | DEP
red
Dared
DMPLETE
S COMPI | lest ore test } | | | LANG EXPLOP | RAT | ORY I | DRILLIN | G DAI | LY DRIL | LING REPORT RIC | G#: | k.2 | Ang | le or Vertical
(circle one)- | Rig | DATE: DEC. | 21,1988 | |--------------------------|-------|---------|-----------|--------|-----------|--------------------|----------|--------------|-----------|---------------------------------|----------------|------------------|-----------------| | Daily Noo
Start time: | | 0.0 | | | ly Mip | 12:00 | | sistence: | P | ROJECT | | | | | | 184 | | | | | | _ | | _ | DICC | | - GILT E | DGE | | Hole #: | | | e or Ver | | Hol | | e or Ve | | Hole | | | or Vertical | TOTAL | | R88.53 | 3 | (CI | ircle one | 9) | R8 | 9-534(01 | rcle or | ne) | | | (CII | cle one) | FOOTAGE DRILLED | | Depth today: | | Depth | yester | day: | | th today: | | | Dep | th today: | | | TODAY: | | 900 | | (| 855 | | | 405 | | - | | | | | 450FT. | | | | | - 1 | | | | MATER | RIALS USED | | | | | | | Quantity: Size: | | Mate | erial Nar | ne: | | Quantity: Size: | Ma | terial Name: | | Quantity Si | ze: | Material Name | | | | | | 100 8 | | | | | | - | - | -1 11 | | | | Gal. | | Quic | k Foam | | | | . " — | _X Nip | ple | | 98 | STABALI | ZER BIT | | Gal. | | E-Z | Mud | | | | 17 | _X Nip | ple | | | # FA99 | 351 | | | | | | | | | | | | | | | | | Bag | S | Cem | ent | | | - | _ | _ • Elbow | - | | 4 | - | | | | _ , | Rod. | Wipers | | | | " Tee | | | | Negri | | | | The state of | , | ' Tri-C | one We | ar Sle | eves | | " Pipe | e Plug | | | | | | | The same | | | | | CVC3 | A STATE OF THE | | | | | | 100 | | | | | Bazo | ooka Tub | be | | ft. of | | _ "Casing | | | | | | | 91 | | 14-H | ole Ada | pter | | |
" Cas | ing Coupler | s | | ST IA | | | | BIT#: | S | ZE: | TYPE: | Tri- | Cone Ca | rbide, Hammer Bi | t. | MAKE: | 1 | FOOTAGE: | New | Bit previously | usedUsed | | | 1 | - | | Tri- | Cone St | eel Tooth | | 11155101 | 1 | | Bit | on this pro | ject Bit | | BIT#: | | ZE: | TVDE | | • | ne of the above) - | | / | | FOOTAGE | | | e one) | | DI1#. | 31 | ZC. | TYPE: | | | rbide, Hammer Bi | L) | MAKE: | | FOOTAGE: | Bit | Bit previousl | oject Bit | | | (| 0 | | | (circle o | ne of the above) - | | M115510, | ~ | | | | e one) | | FROM | 7 | | то | | | | | | A | CTIVITY | | | | | 12:00 | | | 2:00 | - | DI | 2166 855 | + | 0 900 | | to Ry | 38-3 | 5 3 2 | | | | | | 3 | | ,,, | 0.75 | | | | | | | | | 2:00 | | | 3:15 | | 1 1 | TRIP OUT | | R16 D | 6001 | N | | | | | | | | - | | | | 1 | | | | | | | | 3:18 | | | 4:15 | | | MOVE | | | | | | | 190 | | 1 | | | 1.10 | | | 11-4 | | | | | | – | | | 4:15 | | | 5:15 | | -1 | SET UP; | D | RILL | - 3 | E7 301 | a F | 100 | | | 5.15 | | 1 | 12:00 | | | DRILL T | 0 | 405 P | 88. | 5341 | | | | | | | | | | THE ST | | | | | | - | | | | | | | -5 | | 19 | | | | Alexander | RIG | H | 2005 11 | | | | | | | | | | | | | movi | | | | | | | | | | 0 | | Table 1 | | | 1-(00) | 267 | | 1 | | | | | | | | 1 | | | | | | | | | | | | 1 | | | | 5 | | Hari | | 7/3 | 4 | | | | | | | | | - | , | | | 4 | | | - | | | | SAMPLING PE | RF | ORME | ED BY L | ANG? | Yes | No Partially (| circle | one) | | 100 | 1 | Durte | | | Hrs MO | VIN | G | Hrs | НАЦ | IING W | ATER, Hrs. | STAN | DRY | | Drillers sig | | | Hrs. 13 | | 1113.1410 | V 114 | u, | | | LING VV | ATEII,TIII3. | STAIR | 001 | | | | STOFLET | - Uro 15 | | —— Hrs. BIG | /SN | MALL | CAT (cir | cle or | ne), | Hrs. SKIDDER, | | | | Helpers sig | | | Hrs. / 2 | | Hrs. HC | DUR | LY V | VORK, | CAUS | E OF | LOST TIME (repa | airs, lo | ost circulat | ion | | | RMOLD | Hrs. /> | | | | | | | | | 1 | | | Helpers sig | gnatui | re | | | etc.,) | | | | | | | | N. T. T. | | | *JUS
ting F | | Applies)******* | | | - | | 1-1111 | 777 | | | | 7 | | | | or Parts | | | | | | 14 1 28 | | | 200 | | | | | | e (after the 1st | one hour) | | | | | | | Line | 2 15 | | 7 | 100 | | | | | | CLIENT REP: | | 5.5 | | | | Wa | s the h | nole(s) comp | leted | to desired de | pth? | YesNo _ | ? | | LANG EXPLORATORY DRILLING DAILY DRIL | | Angle or Vertical Big DATE: DATE: DATE: DATE: | |--|--|--| | Daily Start time: 2,00 Daily Finish time | Subsistence: 1 Day 3 Men | NAME: Brohm (Flip)4/hrs | | Hole #: Angle or Vertical Hole | e #: Angle or Vertical(circle one) | Hole #: Angle or Vertical TOTAL (circle one) FOOTAGE DRILLED | | Depth today: Depth yesterday: Dep | | Depth today: | | 855 (450) | | <u>405</u> _{FT.} | | Quantity: Size: Material Name: | Quantity : Size: Material Name: | Quantity Size: Material Name: | | Gal. Quick Foam | "X Nippl | e | | Gal. E-Z Mud | XNippl | e | | Bags Cement "Rod Wipers | * Elbow | | | "Tri-Cone Wear Sleeves | " Pipe Plug | | | Bazooka Tube 14-Hole Adapter | ft. of "Casing | | | | " Casing Couplers | FOOTAGE: New Bit previously used Used on this project Bit | | (circle o | one of the above) Butto | FOOTAGE: New_Bit previously used_Used | | Tri-Cone St | | Bit on this project Bit | | 1 FROM/5 12100) | Discussing. | hagilyety | | 12:00 8:15 D | rilled from | 750-165 on hole 1883 | | 8:15 9:00 | hyt down to | - x injector line | | 7:00 10:00 Dx | illed from / | 65-955 on hole 188-5 | | | | | | | THE RESIDENCE OF THE PARTY T | KACASAN ESSERVICIONES | | The case | - A GOOD FIX | ploratory | | The state of s | | . 111. | | 100 | POT DI | illing | | | | | | SAMPLING PERFORMED BY LANG? Yes | No Partially (circle one) | Scott Brug Hrs 12/4 | | Hrs. MOVING, Hrs. HAULING W | | Drillers signature W Se Hrs. 24 | | Hrs. HOURLY WORK, CAUSE OF | | | | $etc.$) $174 \rightarrow R1$ | g lime | Hélpers signature *********JUSTIFY HOURS (If Applies) ******* Getting Fuel | | | , | Chasing for PartsDrive Time (after the 1st one hour) | | CLIENT REP: | Was the hole(s) compl | eted to desired depth? Yes No? |